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Unique spectral features and time structure of synchrotron radiation allows 
one to use this kind of excitation in investigation of electronic relaxation 
processes in insulators with wide band gap. The knowledge of these 
processes is important for understanding of scintillation efficiency in 
crystals. Luminescence excitation technique is convenient for study of 
energy t ransfer in these systems and for investigation of crystal energy 
structure. 
In general, luminescence excitation spectra can be subdivided into several 
spectral regions:

Direct excitation of lowest defect excited state
Ionization of defects by photons with energy below the matrix 
forbidden gap
Excitation of matrix Urbach tail
Excitation of excitons
Production of separated low-energy electron-hole pairs
Production of high-energy electron-hole pairs  followed by impact 
excitation/ionization of defects

Each of these regions is characterized by different role of rela xation 
channels. Possible channels of energy transfer and relaxation are 
discussed in the presentation. 

Absorption coeffic ient in wide photon energy range and different
processes  studied using synchrotron radiation excitation of 
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Ionization of defects by photons with energy below 
the matrix forbidden gap
Excitation of matrix Urbach tai l

Ionized defect 
+ electron

Urbach
absorption Exciton 

Yb3+ charge transfer luminescence (CTL) excitation (Guerassimova e t al)

CTL s pectra and exc itation of CT L 
spectra of ses quioxides measured 

with different tim e windows, 
temper atur e 10 K.

Slow/fast emission r atio increas es 
with ener gy in Ur bach ta il r eg ion, i.e. 
slow component increas es with 
de loc al iz ation. 
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Urbach tai l effect in PbWO4 excitation 
spectra

PWO exc itation s pectra f or b lue (top) and green (bottom) em iss ion bands
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Temper atur e dependence of 
PWO exc itation s pectra 
shows two phenom ena: 

(1) dependence of exc itation 
spectrum in Ur bac h
abs or ption r eg ion due to 
change of the fraction of 
abs or bed radiation in the 
sam ple and 

(2) incr eas ing of the slope of 
quant um y ie ld with T in the 
reg ion of s epar ated e- h
pairs (s ee below) 
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Production of separated low-energy electron-hole 
pairs

Exciton 

Electron-hole 
pair

Probability of binding or  separation
of the components of an electron-hole pair vs their 

energy
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Energy of an electron-hole pair

R0 increases with decrease of 
temperature, therefore this 
probability is temperature 
dependent: 

T

The nature of this curve is the increase of 
electron-hole separation with pair energy 
and the decrease of direct recombination 
with this separation:

The effect of electron kinetic energy on the efficiency of 
energy transfer to the lu minescence center as a function of 

tempera ture (Spassky e t al)
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ZnWO4: 
(a) –quantum yield spectra at RT and 
LHeT and refl ectivity (thin curve); 
(b) – the ratio of the above quantum yield 
spectra.

RT

LHeT Excitation spectrum 
temperature dependence is 
described in previous slide

Production of high-energy electron-hole pairs 
followed by impact excitation/ionization of defects

Electron-hole 
pairs
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MgO:Al – threshold of multiplication of electronic 
excitations (Ch. Lus hc hik, Mikhailin et al )
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Exact position of e-e scattering threshold 
located in the region of abrupt decrease 
of R and α can be estimated using 
measurement of luminescence and total 
photoemission excitation spectra

R

Two types of recombination channels: 
excitonic one (upper part) and recombination on a centre 

(lower part). 
Figures on the right di splay typical energy dependence of 

the quantum yield of the se channels

Experimentally observed 
two types of recombination 

channels

0

20

40

60

0 5 10 15 20 25

CaWO4

3Eg

2Eg

Eg

Luminescence excitation spectra of intrinsic 
luminescence of 
CaWO4 (upper panel) [S. I.  Golovkova, A. M. 
Gurvich, A. I.  Kravchenko, V. V. Mikhailin, A. N. 
Vasil'ev, Phy s. Stat.  Sol. (a), 77 (1983) 375] 

and 

activator luminescence of 

CaSO4:Sm [I.  A. Kamenskik h, V. V. Mikhailin, I.  
N. Shpinko v and A. N. Vasil'ev, Nucl. Instr.  and Meth.,  
A282 (1 989) 599 ] (middle panel)
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Manifestation of core excitons in optical functions in 
VUV reguion
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Manifestation of core
excitons in in optical 

functions in VUV reguion
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Intensity of core exciton peaks correlates with 
the nature of the bottom of the conduction band
(Kolobanov, Spasskyet al). 

Cation core excitons are visible only if the 
lowest states of conduction band are formed 
from cation states (Pband Bamolibdates).

Reflectivity shows no structure in core exciton 
region if the lowest states are formed from 
complex anion states (Srand Ca molibdates).

VB (MoO4
2- bond states)

Pb2+ Ba2+ Sr2+ Ca2+

CondB(MoO4
2- antibondstates)

•Creation of the reversible damage: 
a) transient defects - close F-H pairs
b) Change of electronic state of deep defect levels 
in the forbidden energy gap
•Creation of the irreversible damage:
a) stable F-H pairs
b) defect conglomerates 

The reasons of light yield instability 
induced by radiation 

Benefits of  VUV and X-ray SR in radiation 
damage study

• VUV (especially  XUV) and X-ray  photons produce 
the same spectrum of elementary  electronic 
excitations (electron-hole pairs, excitons, core level 
excitations, initial defect formation stages) as high-
energy  ionizing particle

• Absorption coefficient in XUV and X-ray  region is 
extremely  high (104 to 106 cm-1), therefore 
accumulated dose in the thin absorption layer becomes 
huge

• Unique spectral features and time structure, and high 
intensity  of synchrotron radiation allow one to use this 
kind of excitation in investigation of defects and their 
creation in insulators with wide band gap.
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SR spectral distribution for 
various electron energy 
(R=32 m)

How to study radiation effects using 
luminescence spectroscopy

• Changes of luminescence emission spectra (additional 
emission bands) 

• Changes of decay kinetics (radiation defects can 
result  in sharpening of initial stages of decay and 
increasing of slow component)

• Changes of energy transfer (radiation defects can 
change ratio of several relaxation channels)
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Usage of SR in X-ray region in the study of 
PWO radiation hardness 

•VEPP-3 (Budker INP): Flux of 1016 ph/s with 
energy from 2 to 100 KeV (“white” X-rays)
•DCI (Lure, Orsay): Flux of 1012 ph/s of 
monochromatized 15 KeV X-ray photons

Radiation damage in PWO

• Dose rate is about 1 
kGy/sec (in thin absorpti on 
layer, d~ 10-5 cm)

• Degradation /  enhancing of 
emission under irradiati on 
depends on the emission 
spectral r egion

• Fast and slow recovering of 
radiation defects (upper 
panel)

0 1 00 2 00 30 0 4 00

0. 8

0. 9

1. 0

1. 1

c

b

a

LU
M

IN
ES

CE
NC

E 
IN

T
EN

SI
TY

, a
rb

.un
.

TI M E,  sec

(a) Green emis sion (480 nm) 
– fast de grada tion a t firs t 
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(b) Blue emissi on (380 nm) 
is more sta ble under 
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Dose dependence for different regions of 
PWO emission spectrum excited by X-ray SR
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Lead Tungstate scintillators
•20 PbWO4 crystals of first 
generation 
•1 MGy dose accumulated 
in thin surface layer in 10 
min, 15 KeV excitation 
(DCI, Orsay)

•green emission is much 
more sensitive to 
irradiation
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Correlation 
between the 
radiation induced 
variation of light 
yield 
and the profi le of 
emission spectrum, 
decay kinetics 
and the shape of 
optical 
transmission (I, II 
and III –different 
samples)

Excitation by 90 eV
photons (SuperACO)

•Dose rate is about 1 kGy/sec 
(in thin absorpti on l ayer, d~10-5

cm)
•Degradation /  enhancing of 
emission under irradiati on 
depends on the emission 
spectral r egion
•Fast and slow recovering of 
radiation defects (upper panel)

•Fast (blue) component – excitonic (Pb) 
emission, (should be linear w ith excitation 
intensity)
•Slow  (green) component – defect 
recombination emission, (should be non-linear 
(quadratic?) w ith excitation intensity)

PWO emission spectrum explanation

PbWO4

Modulation of SR spectrum by 
the grating spectral efficiency 
with sharp peculiarities allows 
one to estimate the order of the 
process 

Sharp structure due to Pt 
covering of the grating 
dissapiars in 
1st order fast PWO emission
and 
2nd order slow PWO emission

How to measure nonlinear excitation efficiency?
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Conclusions

Fundamental mechanisms of electronic relaxation 
in large bandgap solids and energy transfer can be 
studied by analysis of luminescence excitation 
spectra and kinetics excited by VUV-X 
synchrotron radiation photons, especially using 
Time-Resolved Luminescence VUV Spectroscopy.

High flux of SR enables to simulate and investigate 
radiation damage effects.


